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Longest Common Subsequence

• Strings 𝑥, 𝑦 over alphabet Σ, 𝑥 = 𝑛 ≥ 𝑚 = 𝑦

• Correspondence = monotone sequence of index pairs 𝑖𝑘 , 𝑗𝑘 𝑘=1
ℓ

• Value = number of pairs (𝑖, 𝑗) with 𝑥 𝑖 = 𝑦[𝑗]
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Weighted Longest Common Subsequence

• Strings 𝑥, 𝑦 over alphabet Σ, 𝑥 = 𝑛 ≥ 𝑚 = 𝑦

• Correspondence = monotone sequence of index pairs 𝑖𝑘 , 𝑗𝑘 𝑘=1
ℓ

• Weight function 𝑓: Σ × Σ → ℕ

• Value = σ𝑘 𝑓(𝑥 𝑖𝑘 , 𝑦 𝑗𝑘 )
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All-Substrings WLCS

• Strings 𝑥, 𝑦 over alphabet Σ, 𝑥 = 𝑛 ≥ 𝑚 = 𝑦

• Correspondence = monotone sequence of index pairs 𝑖𝑘 , 𝑗𝑘 𝑘=1
ℓ

• Weight function 𝑓: Σ × Σ → ℕ

• Value = σ𝑘 𝑓(𝑥 𝑖𝑘 , 𝑦 𝑗𝑘 )

• Goal: Compute matrix 𝐶 where 𝐶 𝑖, 𝑗 = WLCS value between 𝑥 and 𝑦 𝑖: 𝑗
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WLCS and AWLCS

• Applicable to bioinformatics problems

• 𝐶 matrix from AWLCS useful for inferring structure in the strings
• Approximate tandem repeats
• Circular alignments

• WLCS solvable by a dynamic programming algorithm in 𝑂(𝑛𝑚) time

• AWLCS solvable in time 𝑂 𝑛𝑚 log𝑚 [Schmidt 1998]

• Unweighted case of AWLCS solvable in 𝑂(𝑛𝑚) time [Alves et al. 2008]
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Parallel Algorithms for WLCS

• Standard dynamic programs do not parallelize easy
• Dependency chains of length Θ 𝑛 +𝑚

• Divide-and-conquer approaches
• Strings 𝑥1, 𝑥2, 𝑦

• 𝐶1, 𝐶2 AWLCS matrices for strings (𝑥1, 𝑦) and (𝑥2, 𝑦)

• Matrix multiplication over the ring (max,+)

• 𝐶1 ⋅ 𝐶2 is the AWLCS matrix for (𝑥1 ⋅ 𝑥2, 𝑦)
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Divide-and-Conquer Approaches
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Divide-and-Conquer Approaches

• 𝐴 𝑚 = time to multiply two 𝑚 ×𝑚 AWLCS matrices

• 𝐵(𝑛,𝑚) = time to compute AWLCS on strings of length 𝑛,𝑚

• With 𝑝 processors, using divide-and-conquer gets a running 
time of:

𝐵
𝑛

𝑝
,𝑚 + 𝐴 𝑚 log 𝑝
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Divide-and-Conquer Approaches

• Need to make the matrix multiplication step fast

• Exploit the Monge property of AWLCS matrices
𝐶 𝑖, 𝑗 + 𝐶 𝑘, ℓ ≤ 𝐶 𝑖, ℓ + 𝐶 𝑘, 𝑗

• For unweighted case, [Tiskin 2015] gives 𝐴 𝑚 = 𝑂 𝑚 log𝑚

• For AWLCS, 𝐴 𝑚 = 𝑂 𝑚2 [Russo 2012]

12



Our Results (Divide-and-Conquer)

Theorem 1: For any 𝜖 > 0, there is a parallel algorithm with

𝑂 𝐵
𝑛

𝑝
,𝑚 +

1

𝜖2
𝑚 log2𝑊 log2 𝑛 log 𝑝

running time which finds a (1 − 𝜖)-approximate WLCS solution.

• 𝑝 = number of processors

• 𝑊 = maximum weight of a correspondence
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Our Results (Base Case)

• Look at case where 𝑓 is bounded by 𝜎

• Extend the result of [Alves et al. 2008] to this case

Theorem 2: There is a sequential algorithm with 𝑂(𝜎𝑛𝑚)
running time which finds an implicit representation of the 
AWLCS matrix.

• Plugging into Theorem 1 gives overall running time

𝑂
𝑚𝑛𝜎

𝑝
+

1

𝜖2
𝑚 log2 𝜎𝑚 log2 𝑛 log 𝑝
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Algorithm Sketch (Divide-and-Conquer)
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“Sketched” Dynamic Program

• Recall 𝐶 𝑖, 𝑗 =WLCS value between 𝑥 and 𝑦 𝑖: 𝑗

• Define 𝐷 𝑖, 𝑤 = smallest index j s.t. 𝐶 𝑖, 𝑗 ≥ 𝑤

• Computing for all 𝑤 is intractable

• Instead look at powers of ≈ 1 +
𝜖

log 𝑛

• No longer exact, but (1 − 𝜖)-approximate
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Algorithm Sketch (Base Case)

• Generalization of [Alves et al. 2008] to weighted case

• Two sets of indices - ℎ and 𝑣 indices
• Track where increments occur in the AWLCS matrix

• Existence follows from the Monge property

• Give a recurrence to compute these, naïvely in time 𝑂(𝜎2𝑛𝑚)

• A careful algorithm computes them in time 𝑂(𝜎𝑛𝑚)
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Conclusion

• Study WLCS and AWLCS

• Parallel WLCS algorithm w/ 𝑂
𝑚𝑛𝜎

𝑝
+

1

𝜖2
𝑚 log2 𝜎𝑚 log2 𝑛 log 𝑝

running time

• Sequential AWLCS algorithm w/ 𝑂 𝑚𝑛𝜎 running time 
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