A Scalable Approximation
Algorithm for Weighted Longest
Common Subsequence

Jeremy Buhler, Thomas Lavastida,
Kefu Lu, Benjamin Moseley

Carnegie Mellon University
Tepper School of Business

Longest Common Subsequence

» Strings x,y over alphabet %, |x| =n =>m = |y|
« Correspondence = monotone sequence of index pairs {(iy, jx)}ez1
* Value = number of pairs (i,j) with x[i] = y[j]

ﬁ
N[>0

Longest Common Subsequence

» Strings x,y over alphabet %, |x| =n =>m = |y|
« Correspondence = monotone sequence of index pairs {(iy, jx)}ez1
* Value = number of pairs (i,j) with x[i] = y[j]

Invalid correspondence

ﬁ
N[>0

Longest Common Subsequence

» Strings x,y over alphabet %, |x| =n =>m = |y|
« Correspondence = monotone sequence of index pairs {(iy, jx)}ez1
* Value = number of pairs (i,j) with x[i] = y[j]

Valid correspondence
Value = 4

ﬁ
N[>0

Weighted Longest Common Subsequence

Strings x,y over alphabet Z, |x]| =n>m = |y|

Correspondence = monotone sequence of index pairs {(iy, jr)} ezt
Weight function f:Z XX - N

* Value = X f(xlix] ylixD GloOjJo T]2
clolol|1]1
G 4 T|111]l0]0
G 3 Al3|[1]0]0
T A Al T|C|G
y | T 2
C 1 Value = 6
Al C| T| G| G| C

Weighted Longest Common Subsequence

Strings x,y over alphabet Z, |x]| =n>m = |y|

Correspondence = monotone sequence of index pairs {(iy, jr)} ezt
Weight function f:Z XX - N

* Value = X f(xlix] ylixD GloOjJo T]2
clolol|1]1
G 3 T|1]1]01]0
G 2 Al3|[1]0]0
T A 1 Al T|C|G
y | T
C Value = 7
Al C| T| G| G| C

All-Substrings WLCS

Strings x,y over alphabet Z, |x]| =n>m = |y|

Correspondence = monotone sequence of index pairs {(iy, jr)} ezt
Weight function f:Z XX - N

Value = X f(xlix], ylixD
Goal: Compute matrix € where C(i,j) = WLCS value between x and y[i:]

WLCS and AWLCS

 Applicable to bioinformatics problems

« C matrix from AWLCS useful for inferring structure in the strings
« Approximate tandem repeats
 Circular alignments

« WLCS solvable by a dynamic programming algorithm in 0(nm) time
« AWLCS solvable in time 0(nmlogm) [Schmidt 1998]
« Unweighted case of AWLCS solvable in 0(nm) time [Alves et al. 2008]

But what about parallel algorithms?

Parallel Algorithms for WLCS

 Standard dynamic programs do not parallelize easy
« Dependency chains of length @(n + m)

» Divide-and-conquer approaches

Strings x4, x5,y

Cy, C, AWLCS matrices for strings (x4,y) and (x,,y)
Matrix multiplication over the ring (max, +)

C, - C, is the AWLCS matrix for (x; - x5, y)

Divide-and-Conquer Approaches

X, Xy p pieces Xp

Cl CZ Cp

1 1 LI [|

O(logp) combining steps via
(max, +) matrix multiplication

10

Divide-and-Conquer Approaches

« A(m) = time to multiply two m x m AWLCS matrices
* B(n,m) = time to compute AWLCS on strings of length n,m

« With p processors, using divide-and-conquer gets a running
time of:

n
B (;,m) + A(m) logp

Divide-and-Conquer Approaches

* Need to make the matrix multiplication step fast

* Exploit the Monge property of AWLCS matrices
C(i,j)+C(k,®) <C(I,¢)+C(k,j)

* For unweighted case, [Tiskin 2015] gives A(m) = O(mlogm)
« For AWLCS, A(m) = 0(m?) [Russo 2012]

Our Results (Divide-and-Conqguer)

Theorem 1: For any € > 0, there is a parallel algorithm with

0(B(" m)+Lmioe? Wioe? nl
p,m —mlog og?nlogp

running time which finds a (1 — €)-approximate WLCS solution.

* p = number of processors
« W = maximum weight of a correspondence

Our Results (Base Case)

 Look at case where f Is bounded by o
« Extend the result of [Alves et al. 2008] to this case

Theorem 2: There is a sequential algorithm with O(onm
running time which finds an implicit representation of the
AWLCS matrix.

 Plugging into Theorem 1 gives overall running time

oM L 10e? omlos? nl
. — mlog® amlog®nlogp

Algorithm Sketch (Divide-and-Conquer)

X; Xy p pieces X,

Dl D2 Dp

1 L0 ¥ L1

O(logp) combining steps via
“sketched” dynamic program

15

"Sketched” Dynamic Program

* Recall C(i,j) = WLCS value between x and yl[i:J]
 Define D(i,w) = smallest index j st. C(i,j) = w

« Computing for all w Is intractable
€

* Instead look at powers of = 1 +
logn

* No longer exact, but (1 — €)-approximate

Algorithm Sketch (Base Case)

 Generalization of [Alves et al. 2008] to weighted case

* Two sets of indices - h and v indices
* Track where increments occur in the AWLCS matrix
» Existence follows from the Monge property

* Give a recurrence to compute these, naively in time 0(cg%nm)
A careful algorithm computes them in time 0(onm)

Conclusion

e Study WLCS and AWLCS
mno

e Parallel WLCS algorithm w/ O (—+ —mlog® omlog? nlogp)
running time
« Sequential AWLCS algorithm w/ 0(mnao) running time

Thank you!

