A Scalable Approximation Algorithm for Weighted Longest Common Subsequence

> Jeremy Buhler, **Thomas Lavastida**, Kefu Lu, Benjamin Moseley

Carnegie Mellon University Tepper School of Business

Longest Common Subsequence

- Strings x, y over alphabet Σ , $|x| = n \ge m = |y|$
- Correspondence = monotone sequence of index pairs $\{(i_k, j_k)\}_{k=1}^{\ell}$
- Value = number of pairs (i, j) with x[i] = y[j]

Longest Common Subsequence

- Strings x, y over alphabet Σ , $|x| = n \ge m = |y|$
- Correspondence = monotone sequence of index pairs $\{(i_k, j_k)\}_{k=1}^{\ell}$
- Value = number of pairs (i, j) with x[i] = y[j]

Invalid correspondence

Longest Common Subsequence

- Strings x, y over alphabet Σ , $|x| = n \ge m = |y|$
- Correspondence = monotone sequence of index pairs $\{(i_k, j_k)\}_{k=1}^{\ell}$
- Value = number of pairs (i, j) with x[i] = y[j]

Valid correspondence Value = 4

Weighted Longest Common Subsequence

- Strings x, y over alphabet Σ , $|x| = n \ge m = |y|$
- Correspondence = monotone sequence of index pairs $\{(i_k, j_k)\}_{k=1}^{\ell}$
- Weight function $f: \Sigma \times \Sigma \to \mathbb{N}$
- Value = $\sum_k f(x[i_k], y[j_k])$

Value = 6

 $\chi \rightarrow$

Weighted Longest Common Subsequence

- Strings x, y over alphabet Σ , $|x| = n \ge m = |y|$
- Correspondence = monotone sequence of index pairs $\{(i_k, j_k)\}_{k=1}^{\ell}$
- Weight function $f: \Sigma \times \Sigma \to \mathbb{N}$
- Value = $\sum_k f(x[i_k], y[j_k])$

Value = 7

All-Substrings WLCS

- Strings x, y over alphabet Σ , $|x| = n \ge m = |y|$
- Correspondence = monotone sequence of index pairs $\{(i_k, j_k)\}_{k=1}^{\ell}$
- Weight function $f: \Sigma \times \Sigma \to \mathbb{N}$
- Value = $\sum_k f(x[i_k], y[j_k])$
- Goal: Compute matrix C where C(i, j) = WLCS value between x and y[i: j]

WLCS and AWLCS

- Applicable to bioinformatics problems
- C matrix from AWLCS useful for inferring structure in the strings
 - Approximate tandem repeats
 - Circular alignments
- WLCS solvable by a dynamic programming algorithm in O(nm) time
- AWLCS solvable in time $O(nm \log m)$ [Schmidt 1998]
- Unweighted case of AWLCS solvable in O(nm) time [Alves et al. 2008]

But what about parallel algorithms?

Parallel Algorithms for WLCS

- Standard dynamic programs do not parallelize easy
 - Dependency chains of length $\Theta(n+m)$
- Divide-and-conquer approaches
 - Strings x_1, x_2, y
 - C_1, C_2 AWLCS matrices for strings (x_1, y) and (x_2, y)
 - Matrix multiplication over the ring (max, +)
 - $C_1 \cdot C_2$ is the AWLCS matrix for $(x_1 \cdot x_2, y)$

Divide-and-Conquer Approaches

Divide-and-Conquer Approaches

- A(m) = time to multiply two $m \times m$ AWLCS matrices
- B(n,m) = time to compute AWLCS on strings of length n,m
- With *p* processors, using divide-and-conquer gets a running time of:

$$B\left(\frac{n}{p},m\right) + A(m)\log p$$

Divide-and-Conquer Approaches

- Need to make the matrix multiplication step fast
- Exploit the **Monge property** of AWLCS matrices $C(i,j) + C(k,\ell) \le C(i,\ell) + C(k,j)$
- For unweighted case, [Tiskin 2015] gives $A(m) = O(m \log m)$
- For AWLCS, $A(m) = O(m^2)$ [Russo 2012]

Our Results (Divide-and-Conquer)

Theorem 1: For any $\epsilon > 0$, there is a parallel algorithm with $O\left(B\left(\frac{n}{p}, m\right) + \frac{1}{\epsilon^2}m\log^2 W\log^2 n\log p\right)$

running time which finds a $(1 - \epsilon)$ -approximate WLCS solution.

- p = number of processors
- W = maximum weight of a correspondence

Our Results (Base Case)

- Look at case where f is bounded by σ
- Extend the result of [Alves et al. 2008] to this case

Theorem 2: There is a sequential algorithm with $O(\sigma nm)$ running time which finds an implicit representation of the AWLCS matrix.

• Plugging into Theorem 1 gives overall running time $O\left(\frac{mn\sigma}{p} + \frac{1}{\epsilon^2}m\log^2\sigma m\log^2 n\log p\right)$

Algorithm Sketch (Divide-and-Conquer)

O(log p) combining steps via
"sketched" dynamic program

"Sketched" Dynamic Program

- Recall C(i,j) = WLCS value between x and y[i:j]
- Define $D(i, w) = \text{smallest index } j \text{ s.t. } C(i, j) \ge w$
- Computing for all *w* is intractable
- Instead look at powers of $\approx 1 + \frac{\epsilon}{\log n}$
- No longer exact, but (1ϵ) -approximate

Algorithm Sketch (Base Case)

- Generalization of [Alves et al. 2008] to weighted case
- Two sets of indices h and v indices
 - Track where increments occur in the AWLCS matrix
 - Existence follows from the Monge property
- Give a recurrence to compute these, naïvely in time $O(\sigma^2 nm)$
- A careful algorithm computes them in time $O(\sigma nm)$

Conclusion

- Study WLCS and AWLCS
- Parallel WLCS algorithm w/ $O\left(\frac{mn\sigma}{p} + \frac{1}{\epsilon^2}m\log^2\sigma m\log^2 n\log p\right)$ running time
- Sequential AWLCS algorithm w/ $O(mn\sigma)$ running time

Thank you!