A Scalable Approximation Algorithm for Weighted Longest Common Subsequence

Jeremy Buhler, Thomas Lavastida, Kefu Lu, Benjamin Moseley

Longest Common Subsequence

- Strings x, y over alphabet $\Sigma,|x|=n \geq m=|y|$
- Correspondence $=$ monotone sequence of index pairs $\left\{\left(i_{k}, j_{k}\right)\right\}_{k=1}^{\ell}$
- Value $=$ number of pairs (i, j) with $x[i]=y[j]$

\uparrow	G						
	G						
	A						
y	T						
	C						
		A	C	T	G	G	A

Longest Common Subsequence

- Strings x, y over alphabet $\Sigma,|x|=n \geq m=|y|$
- Correspondence $=$ monotone sequence of index pairs $\left\{\left(i_{k}, j_{k}\right)\right\}_{k=1}^{\ell}$
- Value $=$ number of pairs (i, j) with $x[i]=y[j]$

\uparrow	G					4	
	G	3					
	A						
y	T				2		
	C			1			
		A	C	T	G	G	C

Invalid correspondence

Longest Common Subsequence

- Strings x, y over alphabet $\Sigma,|x|=n \geq m=|y|$
- Correspondence $=$ monotone sequence of index pairs $\left\{\left(i_{k}, j_{k}\right)\right\}_{k=1}^{\ell}$
- Value $=$ number of pairs (i, j) with $x[i]=y[j]$

\uparrow	G					4	
	G				3		
	A						
y	T			2			
	C		1				
		A	C	T	G	G	C

Valid correspondence Value $=4$

Weighted Longest Common Subsequence

- Strings x, y over alphabet $\Sigma_{,}|x|=n \geq m=|y|$
- Correspondence $=$ monotone sequence of index pairs $\left\{\left(i_{k}, j_{k}\right)\right\}_{k=1}^{\ell}$
- Weight function $f: \Sigma \times \Sigma \rightarrow \mathbb{N}$
- Value $=\sum_{k} f\left(x\left[i_{k}\right], y\left[j_{k}\right]\right)$

G						
$x \rightarrow$						
\uparrow	G					4
y	A					
x						
	T			2		
C		1				
	A	C	T	G	G	C

G	0	0	1	2
C	0	0	1	1
T	1	1	0	0
A	3	1	0	0
	A	T	C	G

Value $=6$

Weighted Longest Common Subsequence

- Strings x, y over alphabet $\Sigma_{,}|x|=n \geq m=|y|$
- Correspondence $=$ monotone sequence of index pairs $\left\{\left(i_{k}, j_{k}\right)\right\}_{k=1}^{\ell}$
- Weight function $f: \Sigma \times \Sigma \rightarrow \mathbb{N}$
- Value $=\sum_{k} f\left(x\left[i_{k}\right], y\left[j_{k}\right]\right)$

\uparrow	G					3	
	G				2		
	A	1					
y	T						
	C						
		A	C	T	G	G	C

G	0	0	1	2
C	0	0	1	1
T	1	1	0	0
A	3	1	0	0
	A	T	C	G

Value $=7$

All-Substrings WLCS

- Strings x, y over alphabet $\Sigma_{,}|x|=n \geq m=|y|$
- Correspondence $=$ monotone sequence of index pairs $\left\{\left(i_{k}, j_{k}\right)\right\}_{k=1}^{\ell}$
- Weight function $f: \Sigma \times \Sigma \rightarrow \mathbb{N}$
- Value $=\sum_{k} f\left(x\left[i_{k}\right], y\left[j_{k}\right]\right)$
- Goal: Compute matrix C where $C(i, j)=$ WLCS value between x and $y[i: j]$

WLCS and AWLCS

- Applicable to bioinformatics problems
- C matrix from AWLCS useful for inferring structure in the strings
- Approximate tandem repeats
- Circular alignments
- WLCS solvable by a dynamic programming algorithm in $O(\mathrm{~nm})$ time
- AWLCS solvable in time $O(n m \log m)$ [Schmidt 1998]
- Unweighted case of AWLCS solvable in $O(\mathrm{~nm})$ time [Alves et al. 2008]

But what about parallel algorithms?

Parallel Algorithms for WLCS

- Standard dynamic programs do not parallelize easy
- Dependency chains of length $\Theta(n+m)$
- Divide-and-conquer approaches
- Strings x_{1}, x_{2}, y
- C_{1}, C_{2} AWLCS matrices for strings (x_{1}, y) and (x_{2}, y)
- Matrix multiplication over the ring (max, +)
- $C_{1} \cdot C_{2}$ is the AWLCS matrix for $\left(x_{1} \cdot x_{2}, y\right)$

Divide-and-Conquer Approaches

Divide-and-Conquer Approaches

- $A(m)=$ time to multiply two $m \times m$ AWLCS matrices
- $B(n, m)$ = time to compute AWLCS on strings of length n, m
- With p processors, using divide-and-conquer gets a running time of:

$$
B\left(\frac{n}{p}, m\right)+A(m) \log p
$$

Divide-and-Conquer Approaches

- Need to make the matrix multiplication step fast
- Exploit the Monge property of AWLCS matrices

$$
C(i, j)+C(k, \ell) \leq C(i, \ell)+C(k, j)
$$

- For unweighted case, [Tiskin 2015] gives $A(m)=O(m \log m)$
- For AWLCS, $A(m)=O\left(m^{2}\right)$ [Russo 2012]

Our Results (Divide-and-Conquer)

Theorem 1: For any $\epsilon>0$, there is a parallel algorithm with

$$
O\left(B\left(\frac{n}{p}, m\right)+\frac{1}{\epsilon^{2}} m \log ^{2} W \log ^{2} n \log p\right)
$$

running time which finds a $(1-\epsilon)$-approximate WLCS solution.

- $p=$ number of processors
- $W=$ maximum weight of a correspondence

Our Results (Base Case)

- Look at case where f is bounded by σ
- Extend the result of [Alves et al. 2008] to this case

Theorem 2: There is a sequential algorithm with O ($\sigma n m$) running time which finds an implicit representation of the AWLCS matrix.

- Plugging into Theorem 1 gives overall running time

$$
O\left(\frac{m n \sigma}{p}+\frac{1}{\epsilon^{2}} m \log ^{2} \sigma m \log ^{2} n \log p\right)
$$

Algorithm Sketch (Divide-and-Conquer)

$O(\log p)$ combining steps via "sketched" dynamic program

"Sketched" Dynamic Program

- Recall $C(i, j)=$ WLCS value between x and $y[i: j]$
- Define $D(i, w)=$ smallest index j s.t. $C(i, j) \geq w$
- Computing for all w is intractable
- Instead look at powers of $\approx 1+\frac{\epsilon}{\log n}$
- No longer exact, but ($1-\epsilon$)-approximate

Algorithm Sketch (Base Case)

- Generalization of [Alves et al. 2008] to weighted case
- Two sets of indices - h and v indices
- Track where increments occur in the AWLCS matrix
- Existence follows from the Monge property
- Give a recurrence to compute these, naïvely in time $O\left(\sigma^{2} n m\right)$
- A careful algorithm computes them in time $O(\sigma n m)$

Conclusion

- Study WLCS and AWLCS
- Parallel WLCS algorithm w/ $O\left(\frac{m n \sigma}{p}+\frac{1}{\epsilon^{2}} m \log ^{2} \sigma m \log ^{2} n \log p\right)$ running time
- Sequential AWLCS algorithm w/ $O(m n \sigma)$ running time

Thank you!

