Online Scheduling via Learned Weights

Silvio Lattanzi, **Thomas Lavastida**, Benjamin Moseley, Sergei Vassilvitskii 8/2/2021

ML is Everywhere

Massive successes in image classification, NLP, etc.

Widening array of applications

Can ML help to improve algorithms for combinatorial problems?

Algorithms with ML

- Find a good algorithm for "practical" instances?
 - Hard to characterize these
 - Usually resort to worst case analysis or stochastic analysis
- What if we have data? E.g., past instances

Algorithms with ML

Learn from instances of the problem

 Design a good algorithm using predictions from past data, approaching "instance-optimal"

Need to handle errors

Algorithms with ML

- Caching Problem [Lykouris and Vassilvitskii 2018]
- Ski Rental + Non-Preemptive Sched. [Purohit et al. 2018]
- Heavy Hitters Sketches [Hsu et al 2019]
- Improved Bloom Filters [Mitzenmacher 2018]
- Learned Index Structures [Kraska et al 2018]
- Metrical Task Systems [Antoniadis et al 2020]
 - ... even more recently

Online Load Balancing

- *m* machines
- *n* jobs arrive in online list
 - Restricted assignments
 - N(j) = subset of feasible machines for job j
 - p_i = size of job j
- Machine load: total size of jobs assigned to a machine
- Goal: minimize makespan

Worst Case Analysis

 \bullet Online algorithm c-competitive if for all inputs

$$ALG \leq c \cdot OPT$$

- Every algorithm $\Omega(\log m)$ -competitive
- Greedy algorithm $O(\log m)$ -competitive
 - [Azar, Naor, Rom 1995]

Predictions for Load Balancing?

- Load of machines in *OPT*?
 - Pad the instance
- Dual variables?
 - Too sensitive to small errors
- Distribution over job subsets?
 - Potentially too many!

Goal: Capture machine contentiousness

Predictions for Load Balancing?

- Load of machines in *OPT*?
 - Pad the instance
- Dual variables?
 - Too sensitive to small errors
- Distribution over job subsets?
 - Potentially too many!

Goal: Capture machine contentiousness

Machine Weights

- Predict a single weight for each machine
- Lower weight corresponds to more contentious machines
- Framework:
 - "Correct" weights define a near optimal fractional assignment
 - Handle errors when the weights are predicted
 - Round to an integral solution online

Existence of Weights

Theorem 1

For any (offline) instance and $\epsilon > 0$ there exists weights $w \in R_+^m$ and a fractional assignment x(w) with fractional makespan at most $(1 + \epsilon)OPT$

- Machine i has weight w_i
- Fractional assignment: $x_{ij}(w) = \frac{w_i}{\sum_{i' \in N(j)} w_{i'}}$
- Want to satisfy $\sum_{j} p_{j} x_{ij}(w) \leq (1 + \epsilon)OPT$ for all i
- Proof builds off [Agrawal et al. 2018]

Existence of Good Weights

- Initially all $w_i = 1$
- For some number of rounds R
 - Compute assignment using weights
 - Fractional load $L_i = \sum_j p_j x_{ij}(w)$
 - For all machines with $L_i \geq (1 + \epsilon)OPT$
 - Set $w_i \leftarrow \frac{w_i}{1+\epsilon}$

Using Weights Online

Theorem 2

Given predicted weights w' there is an online algorithm yielding fractional assignments with makespan $O(\log \eta \ OPT)$

where $\eta := \max_{i} \frac{w'_{i}}{w_{i}}$ is the worst relative error in the predictions

Using Weights Online

- Given predicted weights w'
- Machines operate in phases
- Assign using current weights
- Update $w_i' \leftarrow \frac{w_i'}{2}$ if machine i gets load $10 \cdot OPT$
- Reset load and start a new phase
- If $\eta = \max_{i} \frac{w_i'}{w_i}$ then get $O(\log \eta)$ -competitive assignment

Online Rounding Problem

• Receive j's size, neighborhood, fractional assignment online

$$\{x_{ij}\}_{i\in N(j)} \text{ s. t. } \sum_{i\in N(j)} x_{ij} = 1$$

- Use x_{ij} 's to compute integral assignment online
- Rounding algorithm c-competitive if $ALG \leq c \cdot T$
- $T := \max\{\max_{i} \sum_{j} p_{j} x_{ij}, \max_{j} p_{j} \}$

Rounding Online

Theorem 3

There exists a randomized online rounding algorithm for restricted assignment which is $O((\log \log m)^3)$ -competitive with high probability

Theorem 4

Any randomized online rounding algorithm is at least $\Omega\left(\frac{\log\log m}{\log\log\log m}\right)$ -competitive

Conclusion

- Online fractional assignment + rounding yields $O((\log \log m)^3 \log \eta)$ -competitive algorithm with predictions
- Moderately accurate predictions go beyond worst case
- Can retain $O(\log m)$ -competitiveness when η large
 - Application of Mahdian et al. 2012
- Follow up work weights are formally learnable
 - https://arxiv.org/abs/2011.11743
 - To appear in ESA 2021

Thank you!

Questions?