
Learnable and Instance-Robust 
Predictions for Online Matching, 

Flows, and Load Balancing

Thomas Lavastida, Benjamin Moseley, 
R. Ravi, Chenyang Xu

1



ML is Everywhere

• Massive successes in image classification, NLP, etc.

• Widening array of applications

• Can ML help to improve algorithms for combinatorial 
problems?
• (Online algorithms, in particular)

2



Current Status

• Ski Rental
• [Purohit et al. 2018], [Gollapudi et al. 2019]

• Caching
• [Lykouris et al. 2018], [Rohatgi 2020]

• Scheduling
• [Purohit et al. 2018], [Lattanzi et al. 2020]

• Secretaries
• [Antoniadis et al 2020], [Dütting et al. 2021]

• … and more

3



Learning Augmented Algorithms

• Algorithm given access to predictions about online input

• There may be errors – algorithm must account for this
• “Consistency” – no error case

• “Robustness” – infinite error case

• Benefits
• Accurate predictions can go beyond worst case

• Focuses on algorithm design – abstracts the learning step

4



Contributions

• Develop a new model for online algorithms with predictions

• Instance robustness
• New way to understand “error”

• Learnability
• What types of predictions are reasonable to construct?

• Focus on two online problems
• Online Flow Allocation in DAGs

• Online Load Balancing with Restricted Assignments

5



Online Flow Allocation in DAGs

Offline DAG 𝐺 w/ 
node capacities

𝑡

Online source nodes
1/2

1/2

• Assign fractional unit flow to 𝑡 from each online node 𝑠 subject to node capacities
• Goal: maximize total value reaching 𝑡

6



Online Flow Allocation in DAGs

Layered case

Offline DAG 𝐺 w/ 
node capacities

𝑡

Online source nodes

7



Capacitated Online Matching

Impressions Advertisers

𝐶𝑎

8



Online Matching w/ Campaigns

Impressions AdvertisersCampaigns

𝐶𝑎
𝐶𝑣

9



Parameter Robustness

• Algorithm given parameters ො𝑦
• Prediction of true parameters 𝑦∗

• E.g. guess of length of ski trip vs. true length

• Parameterize competitiveness by error 𝛾
• E.g. 𝛾 = ො𝑦 − 𝑦∗ 1

• Error typically depends on problem/prediction considered

• How to compare algorithms for the same problem with 
different types of predictions?

10



Instance Robustness

• Instance ℐ is a vector of impression types
• Type defined by outgoing neighborhood of an impression

• ℐ𝑖 = number of impressions of type 𝑖

• 𝑦 ℐ = “correct” prediction for instance ℐ

• Algorithm given 𝑦(ℐ) as advice

• Sees instance ℐ′ as online input

• Parameterize competitiveness by 𝛾 = ℐ − ℐ′ 1

11



Learnability

• Formulate in terms of Data-driven algorithm design
• [Gupta and Roughgarden, 2017], [Balcan et al. 2019]
• Similar to PAC learning

• 𝐴𝐿𝐺 𝐼, 𝑦 = algorithm’s value when given prediction 𝑦

• Unknown distribution 𝒟 over instances

• Best prediction 𝑦∗ = argmax
𝑦

𝔼𝐼∼𝒟 𝐴𝐿𝐺(𝐼, 𝑦)

• Use samples from 𝒟 to compute ො𝑦 s.t. following occurs w.h.p.:

𝔼𝐼∼𝒟 𝐴𝐿𝐺 𝐼, ො𝑦 ≥ (1 − 𝜖) 𝔼𝐼∼𝒟 𝐴𝐿𝐺(𝐼, 𝑦∗)
• Ideally polynomial number of samplers
• Can also compare to 𝔼𝐼∼𝒟[𝑂𝑃𝑇 𝐼 ]

12



Node Weights

• Predict a weight 𝛼 for each offline node

• Lower weight means more restrictive node

• Use weights to define a fractional flow
• Node 𝑢 has a weight 𝛼𝑢
• For each edge 𝑢, 𝑣 let 𝑥𝑢𝑣 𝛼 =

𝛼𝑣
σ
𝑣′∈𝑁 𝑢

𝛼𝑣′

• Node 𝑢 sends an 𝑥𝑢𝑣-fraction of its incoming flow along edge 𝑢, 𝑣

13



Existence of Good Weights

• Good weights give a (1 − 𝜖)-approximate flow

• Existence for matching case shown by 

[Agrawal, Zadimoghaddam, Mirrokni 2018]

• Extension to general DAGs requires significant work
• Careful algorithm and analysis

14



Results – Instance Robustness

• Instance ℐ is a vector of impression types

• Algorithm given good weights 𝛼(ℐ) as advice

• Sees instance ℐ′ as online input

• Parameterize competitiveness by 𝛾 = ℐ − ℐ′ 1

Theorem: There is an online algorithm which achieves value

max 1 − 𝜖 𝑂𝑃𝑇 − 2𝛾,
1

𝑑 + 1
𝑂𝑃𝑇

where 𝑑 is the diameter of 𝐺 without 𝑡

15



Results - Learnability

• Show learnability under two assumptions
• 𝒟 is a product distribution (impressions are independent)

• The optimal flow in the “expected instance” routes at least a 
constant amount of flow through each node

Theorem: Under the two assumptions, there is an algorithm 
with polynomial sample complexity for learning the weights

16



Results – Load Balancing

• Consider node weights

• Existence of weights and 
parameter robustness considered 
in [Lattanzi et al. 2020]

• Show instance robustness and 
learnability under similar 
assumptions

17

Jobs Machines

𝑝𝑗



Conclusions and Future Work

• Consider a new model for online algorithms with predictions
• Learnability + Instance robustness

• How to construct predictions from past data?

• How do we measure robustness?

• Demonstrate improvements empirically

18

Thank you! Questions?


