Learnable and Instance-Robust
Predictions for Online Matching,
Flows, and Load Balancing

Thomas Lavastida, Benjamin Moseley,
R. Ravi, Chenyang Xu

Carnegie Mellon University
Tepper School of Business

ML is Everywhere

« Massive successes in image classification, NLP, etc.
« Widening array of applications

« Can ML help to improve algorithms for combinatorial
problems?
* (Online algorithms, in particular)

Current Status

» Ski Rental
e [Purohit et al. 2018], [Gollapudi et al. 2019]

» Caching
* [Lykouris et al. 2018], [Rohatgi 2020]

 Scheduling
 [Purohit et al. 2018], [Lattanzi et al. 2020]

« Secretaries
 [Antoniadis et al 2020], [Dutting et al. 2021]

e ... and more

Learning Augmented Algorithms

* Algorithm given access to predictions about online input

« There may be errors — algorithm must account for this
 "Consistency” — no error case
« "Robustness” — infinite error case

 Benefits
 Accurate predictions can go beyond worst case
 Focuses on algorithm design — abstracts the learning step

Contributions

* Develop a new model for online algorithms with predictions

e Instance robustness
« New way to understand “error”

e Learnability
« What types of predictions are reasonable to construct?

* Focus on two online problems

< Online Flow Allocation in DAGs >
* Online Load Balancing with Restricted Assignments

Online Flow Allocation in DAGs

Offline DAG G w/
1/2 node capacities

Online source nodes

« Assign fractional unit flow to t from each online node s subject to node capacities
« Goal: maximize total value reaching t

Online Flow Allocation in DAGs

Layered case

Online source nodes Offline DAG G w/
node capacities

e

-

Capacitated Online Matching

Impressions Advertisers

Ians
Palg
Cam
tching w/
Ma
line
On

S
I
| p

/

Parameter Robustness

 Algorithm given parameters y
 Prediction of true parameters y*
 E.g. guess of length of ski trip vs. true length
« Parameterize competitiveness by error y
*Eg. v =1y -yl
* Error typically depends on problem/prediction considered

* How to compare algorithms for the same problem with
different types of predictions?

Instance Robustness

* Instance 7 is a vector of impression types
 Type defined by outgoing neighborhood of an impression
 J; = number of impressions of type i

* y(J) = "correct” prediction for instance J

* Algorithm given y(7) as advice

* Sees instance 7' as online input

« Parameterize competitiveness by y = ||7 — 7'||;

Learnability

« Formulate in terms of Data-driven algorithm design

 [Gupta and Roughgarden, 2017], [Balcan et al. 2019]
« Similar to PAC learning

*« ALG(I,y) = algorithm’s value when given prediction y
* Unknown distribution D over instances
 Best prediction y* = argmaxE; _|ALG(l,y)]

y

« Use samples from D to compute y s.t. following occurs w.h.p.:

EplALG(L,9)] = (1 —€) E;plALG(, y™)]
* Ideally polynomial number of samplers
 Can also compare to E; . p[OPT(I)]

Node Weights

* Predict a weight a for each offline node
« Lower weight means more restrictive node

« Use weights to define a fractional flow
* Node u has a weight «,,

» For each edge (u,v) let x,,(a) = —

Zv’eN(u) v/
* Node u sends an x,,,-fraction of its incoming flow along edge (u, v)

Existence ot Good Weights

« Good weights give a (1 — €)-approximate flow
» Existence for matching case shown by

[Agrawal, Zadimoghaddam, Mirrokni 2018]

* Extension to general DAGs requires significant work
e Careful algorithm and analysis

Results — Instance Robustness

* Instance 7 is a vector of impression types

* Algorithm given good weights a(9) as advice
* Sees instance 7' as online input

« Parameterize competitiveness by y = ||7 — 7'||;

Theorem: There Is an online algorithm which achieves value

1
max{(l — €)OPT — Zy,d—HOPT}

where d is the diameter of G without ¢

Results - Learnabillity

e Show learnability under two assumptions
* D is a product distribution (impressions are independent)

* The optimal flow in the “expected instance” routes at least a
constant amount of flow through each node

Theorem: Under the two assumptions, there is an algorithm
with polynomial sample complexity for learning the weights

Results — Load Balancing

Jobs Machines « Consider node weights

« Existence of weights and
> ,/I parameter robustness considered
] -
’
]

in [Lattanzi et al. 2020]

 Show instance robustness and
learnability under similar
assumptions

Conclusions and Future Work

« Consider a new model for online algorithms with predictions
* Learnability + Instance robustness

« How to construct predictions from past data?
* How do we measure robustness?
* Demonstrate improvements empirically

Thank you! Questions?

