Online Load Balancing via Learned Weights

Silvio Lattanzi, **Thomas Lavastida**, Benjamin Moseley, Sergei Vassilvitskii October 22, 2019

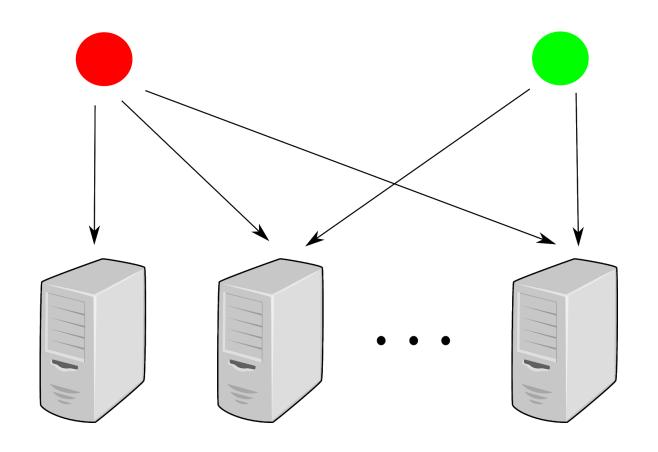
Carnegie Mellon University
Tepper School of Business

Data Center Scheduling

- Jobs arrive online
- Heterogeneous machines and jobs w/ constraints
- Minimize maximum load
- Example: allocating VM's to physical machines in AWS

Online LB w/ Restricted Assignments

- *m* machines
- *n* jobs arrive in online list
 - N(j) = subset of feasible machines for job j
 - $p_i = \text{size of job } j$
- Machine load: total size of jobs assigned to a machine
- Goal: minimize makespan



Worst Case Analysis

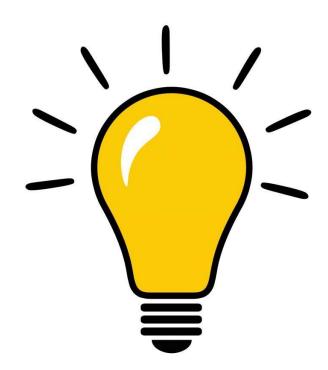
• Online algorithm c-competitive if for all inputs

$$ALG \leq c \cdot OPT$$

- Every algorithm $\Omega(\log m)$ -competitive
- Greedy algorithm $O(\log m)$ -competitive
 - [Azar, Naor, Rom 1995]
- Worst case examples pathological

Learning Augmented Algorithms

- Access to many traces of past jobs
- Learnable patterns may occur in practice
- Can ML be used to augment the design of online algorithms?
- Prediction about online instance
 - What to predict?
 - Handle errors?



Learning Augmented Algorithms

- Caching Problem [Lykouris and Vassilvitskii 2018]
- Ski Rental [Purohit et al. 2018]
- Non-Preemptive Scheduling [Purohit et al. 2018]
- Heavy Hitters Sketches [Hsu et al 2019]
- Improved Bloom Filters [Mitzenmacher 2018]
- Learned Index Structures [Kraska et al 2018]

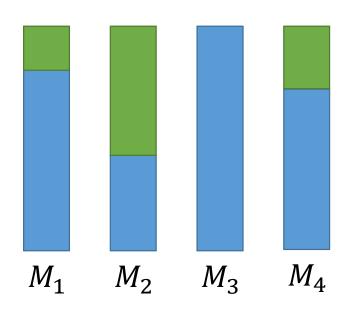
Online Algorithms + Predictions

- Ski Rental problem
 - Predict length of trip
- $\eta :=$ prediction error in hindsight
- Competitive ratio = $f(\eta)$
- Beat worst case for small η ?
- Retain worst case for large η

JANUARY 2020						
Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
29	30	31	1	2	3	4
5	6	7	8	9	10	11
12	13	14	15	16	17	18
19	20	21	22	23	24	25
26	27	28	29	30	31	1
$\stackrel{\longleftarrow}{\eta}$						

What to Predict?

- Load of machines in *OPT*?
 - Pad the instance
- Dual variables?
 - Too sensitive to small errors
- Distribution over job subsets?
 - Potentially too many!
- Our approach:
 - compactly represent fractional solutions
 - Online rounding algorithm to get assignment



Results on Predictions

Theorem 1 – Machine Weights

Let T= optimal makespan. For any $\epsilon>0$ and any restricted assignment instance there exists weights $w\in R_+^m$ and a fractional assignment rule with fractional makespan at most $(1+\epsilon)T$

Given predictions w' of weights, there exists online algorithm yielding fractional assignment with fractional makespan at most $O(\log(\eta) T)$, $\eta := \max_{i} \frac{w'_{i}}{w_{i}}$ is relative error

Machine Weights

- Associate weight w_i to each machine
- Fractional Assignment:

$$x_{ij}(w) = \frac{w_i}{\sum_{i' \in N(j)} w_{i'}}$$

Weights should satisfy

$$\sum_{j} p_{j} x_{ij}(w) \le (1 + \epsilon)T$$

• Idea builds off of [Agrawal et al. 2018]

Online Rounding Problem

• Receive j's size, neighborhood, fractional assignment online

$$\{x_{ij}\}_{i\in N(j)}$$
 s.t. $\sum_{i\in N(j)} x_{ij} = 1$

- Use x_{ij} 's to compute integral assignment online
- Rounding algorithm c-competitive if $ALG \le c \cdot T'$
- $T' \coloneqq \max\{\max_{i} \sum_{j} p_{j} x_{ij}, \max_{j} p_{j} \}$

Results on Rounding

Theorem 2 – Online Rounding

There exists a $O((\log \log m)^3)$ -competitive randomized online rounding algorithm for restricted assignment and succeeds with high probability.

Theorem 3 – Lower Bounds

Every deterministic online rounding algorithms is $\Omega(\frac{\log m}{\log \log m})$ competitive and every randomized online rounding algorithm is $\Omega(\frac{\log \log m}{\log \log \log m})$ -competitive

Conclusions

- Theorems 1 and 2 imply $O((\log \log m)^3 \log \eta)$ -competitive algorithm with predictions
- Moderately accurate predictions go beyond worst case
- Connect prediction error to competitiveness

Questions?