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Machine Learning + Algorithms

• Massive success in recent years
• Image recognition, natural language processing, clustering, etc.

• Analysis and improvements of learning algorithms

• Can ML help to improve algorithms for classic problems?
• Many interesting questions

• Focus on online scheduling problem
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Online Load Balancing

• 𝑚 machines

• 𝑛 jobs arrive in online list
• Restricted assignments

• 𝑁 𝑗 = subset of feasible 
machines for job 𝑗

• 𝑝𝑗 = size of job 𝑗

• Machine load: total size of 
jobs assigned to a machine

• Goal: minimize makespan
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Worst Case Analysis

• Online algorithm 𝑐-competitive if for all inputs 

𝐴𝐿𝐺 ≤ 𝑐 ⋅ 𝑂𝑃𝑇

• Every algorithm Ω log𝑚 -competitive

• Greedy algorithm 𝑂(log𝑚)-competitive
• [Azar, Naor, Rom 1995]
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Learning Augmented Algorithms

• Access to many traces of past jobs

• Learnable patterns may occur in practice

• Can ML be used to augment the design 
of online algorithms?

• Prediction about online instance
• What to predict?

• Handle errors?
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Learning Augmented Algorithms

• Caching Problem [Lykouris and Vassilvitskii 2018]

• Ski Rental + Non-Preemptive Sched. [Purohit et al. 2018]

• Heavy Hitters Sketches [Hsu et al 2019]

• Improved Bloom Filters [Mitzenmacher 2018]

• Learned Index Structures [Kraska et al 2018]
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Online Algorithms + Predictions

• Ski Rental problem
• Predict length of trip

• 𝜂 ∶= prediction error in hindsight

• Competitive ratio = 𝑓(𝜂)

• Beat worst case for small 𝜂?

• Retain worst case for large 𝜂
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Predictions for Load Balancing?

• Load of machines in 𝑂𝑃𝑇?
• Pad the instance

• Dual variables?
• Too sensitive to small errors

• Distribution over job subsets?
• Potentially too many!

• Our approach: 
• Use predictions to get fractional solutions

• Round online to get assignment
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Results

Theorem 1 – Machine Weights

For any 𝜖 > 0 and any instance there exists weights 𝑤 ∈ 𝑅+
𝑚

and a fractional assignment 𝑥(𝑤) with fractional makespan at 
most 1 + 𝜖 𝑂𝑃𝑇

Given predictions 𝑤′ there is an online algorithm yielding 
fractional assignments with fractional makespan at most 

𝑂(log(𝜂)𝑂𝑃𝑇), 𝜂 ∶= max
𝑖

𝑤𝑖
′

𝑤𝑖
is relative error
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Machine Weights

• Associate weight 𝑤𝑖 to each machine

• Fractional Assignment:

𝑥𝑖𝑗 𝑤 =
𝑤𝑖

σ𝑖′∈𝑁(𝑗)𝑤𝑖′

• Weights should satisfy

෍

𝑗

𝑝𝑗𝑥𝑖𝑗 𝑤 ≤ 1 + 𝜖 𝑂𝑃𝑇

• Builds off of [Agrawal et al. 2018]
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Using Weights Online

• Say given predicted weights 𝑤′

• Operate in phases

• Assign using weights

• Update 𝑤𝑖
′ ←

𝑤𝑖
′

2
if machine 𝑖 gets load 10 ⋅ 𝑂𝑃𝑇

• Reset load and start a new phase

• If 𝜂 = max
𝑖

𝑤𝑖
′

𝑤𝑖
then get 𝑂(log 𝜂)-competitive assignment 
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Online Rounding Problem

• Receive 𝑗’s size, neighborhood, fractional assignment online

𝑥𝑖𝑗 𝑖∈𝑁(𝑗)
𝑠. 𝑡. ෍

𝑖∈𝑁(𝑗)

𝑥𝑖𝑗 = 1

• Use 𝑥𝑖𝑗’s to compute integral assignment online

• Rounding algorithm 𝑐-competitive if 
𝐴𝐿𝐺 ≤ 𝑐 ⋅ 𝑇

• 𝑇 ≔ max{max
𝑖

σ𝑗 𝑝𝑗𝑥𝑖𝑗 , max𝑗
𝑝𝑗}
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Results

Theorem 2 – Online Rounding

There exists a 𝑂( log log𝑚 3)-competitive randomized online 
rounding algorithm for restricted assignment and succeeds with 
high probability.

Theorem 3 – Lower Bounds

Every deterministic online rounding algorithms is Ω(
log 𝑚

log log 𝑚
)-

competitive and every randomized online rounding algorithm is 

Ω(
log log 𝑚

log log log 𝑚
)-competitve
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Conclusions

• Theorems 1 and 2 imply 𝑂( log log𝑚 3 log 𝜂)-competitive 
algorithm with predictions 

• Moderately accurate predictions go beyond worst case

• Can retain 𝑂(log𝑚)-competitiveness when 𝜂 large

• Connect prediction error to competitiveness
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Questions?


