Online Scheduling via Learned Weights

Silvio Lattanzi, **Thomas Lavastida**, Benjamin Moseley, Sergei Vassilvitskii January 7, 2020

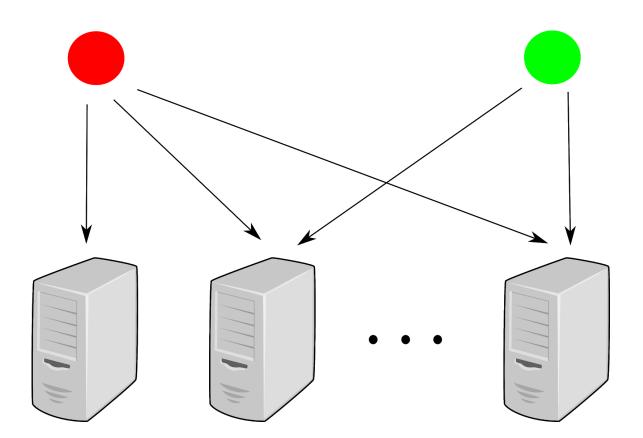
Carnegie Mellon University Tepper School of Business

Machine Learning + Algorithms

- Massive success in recent years
 - Image recognition, natural language processing, clustering, etc.
- Analysis and improvements of learning algorithms
- Can ML help to improve algorithms for classic problems?
 - Many interesting questions
 - Focus on online scheduling problem

Online Load Balancing

- *m* machines
- *n* jobs arrive in online list
 - Restricted assignments
 - N(j) = subset of feasible machines for job j
 - p_j = size of job j
- Machine load: total size of jobs assigned to a machine
- Goal: minimize makespan



Worst Case Analysis

- Online algorithm *c*-competitive if for all inputs $ALG \leq c \cdot OPT$
- Every algorithm $\Omega(\log m)$ -competitive
- Greedy algorithm $O(\log m)$ -competitive
 - [Azar, Naor, Rom 1995]

Learning Augmented Algorithms

- Access to many traces of past jobs
- Learnable patterns may occur in practice
- Can ML be used to augment the design of online algorithms?
- Prediction about online instance
 - What to predict?
 - Handle errors?

\geq	

Learning Augmented Algorithms

- Caching Problem [Lykouris and Vassilvitskii 2018]
- Ski Rental + Non-Preemptive Sched. [Purohit et al. 2018]
- Heavy Hitters Sketches [Hsu et al 2019]
- Improved Bloom Filters [Mitzenmacher 2018]
- Learned Index Structures [Kraska et al 2018]

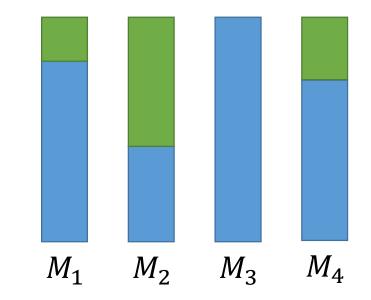
Online Algorithms + Predictions

- Ski Rental problem
 - Predict length of trip
- $\eta :=$ prediction error in hindsight
- Competitive ratio = $f(\eta)$
- Beat worst case for small η ?
- Retain worst case for large η

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
29	30	31	1	2	3	4
5	6	7	8	9	10	11
12	13	14	15	16	17	18
19	20	21	22	23	24	25
26	27	28	29	30	31	1

Predictions for Load Balancing?

- Load of machines in OPT?
 - Pad the instance
- Dual variables?
 - Too sensitive to small errors
- Distribution over job subsets?
 - Potentially too many!
- Our approach:
 - Use predictions to get fractional solutions
 - Round online to get assignment



Results

Theorem 1 – Machine Weights

For any $\epsilon > 0$ and any instance there exists weights $w \in R_+^m$ and a fractional assignment x(w) with fractional makespan at most $(1 + \epsilon)OPT$

Given predictions w' there is an online algorithm yielding fractional assignments with fractional makespan at most $O(\log(\eta) OPT)$, $\eta := \max_{i} \frac{w'_{i}}{w_{i}}$ is relative error

Machine Weights

- Associate weight w_i to each machine
- Fractional Assignment:

$$x_{ij}(w) = \frac{w_i}{\sum_{i' \in N(j)} w_{i'}}$$

- Weights should satisfy $\sum_{i} p_{j} x_{ij}(w) \leq (1 + \epsilon) OPT$
- Builds off of [Agrawal et al. 2018]

Using Weights Online

- Say given predicted weights w'
- Operate in phases
- Assign using weights
- Update $w'_i \leftarrow \frac{w'_i}{2}$ if machine *i* gets load $10 \cdot OPT$
- Reset load and start a new phase
- If $\eta = \max_{i} \frac{w'_{i}}{w_{i}}$ then get $O(\log \eta)$ -competitive assignment

Online Rounding Problem

- Receive *j*'s size, neighborhood, fractional assignment online $\{x_{ij}\}_{i \in N(j)} s.t. \sum_{i \in N(j)} x_{ij} = 1$
- Use x_{ij} 's to compute integral assignment online
- Rounding algorithm *c*-competitive if $ALG \leq c \cdot T$
- $T \coloneqq \max\{\max_{i} \sum_{j} p_{j} x_{ij}, \max_{j} p_{j}\}$

Results

Theorem 2 – Online Rounding

There exists a $O((\log \log m)^3)$ -competitive randomized online rounding algorithm for restricted assignment and succeeds with high probability.

Theorem 3 – Lower Bounds

Every deterministic online rounding algorithms is $\Omega(\frac{\log m}{\log \log m})$ competitive and every randomized online rounding algorithm is $\Omega(\frac{\log \log m}{\log \log \log m})$ -competitve

Conclusions

- Theorems 1 and 2 imply $O((\log \log m)^3 \log \eta)$ -competitive algorithm with predictions
- Moderately accurate predictions go beyond worst case
- Can retain $O(\log m)$ -competitiveness when η large
- Connect prediction error to competitiveness

Questions?